Publikationen des Forschungsbereichs Computergestützte Photonik

Prof. Dr. Antonio Calà Lesina

Multiresonant all-dielectric metasurfaces based on high-order multipole coupling in the visible

verfasst von
Izzatjon Allayarov, Andrey B. Evlyukhin, Antonio Calà Lesina
Abstract

In many cases, optical metasurfaces are studied in the single-resonant regime. However, a multiresonant behavior can enable multiband devices with reduced footprint, and is desired for applications such as display pixels, multispectral imaging and sensing. Multiresonances are typically achieved by engineering the array lattice (e.g., to obtain several surface lattice resonances), or by adopting a unit cell hosting one (or more than one) nanostructure with some optimized geometry to support multiple resonances. Here, we present a study on how to achieve multiresonant metasurfaces in the visible spectral range by exploiting high-order multipoles in dielectric (e.g., diamond or titanium dioxide) nanostructures. We show that in a simple metasurface (for a fixed particle and lattice geometry) one can achieve triple resonance occurring nearly at RGB (red, green, and blue) wavelengths. Based on analytical and numerical analysis, we demonstrate that the physical mechanism enabling the multiresonance behavior is the lattice induced coupling (energy exchange) between high-order Mie-type multipoles moments of the metasurface’s particles. We discuss the influence on the resonances of the metasurface’s finite size, surrounding material, polarization, and lattice shape, and suggest control strategies to enable the optical tunability of these resonances.

Organisationseinheit(en)
Institut für Transport- und Automatisierungstechnik
Hannoversches Zentrum für Optische Technologien (HOT)
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Institut für Quantenoptik
Computergestützte Photonik
Typ
Artikel
Journal
Optics express
Band
32
Seiten
5641-5658
Anzahl der Seiten
18
ISSN
1094-4087
Publikationsdatum
01.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1364/OE.511172 (Zugang: Offen)