Publications of the Research Group Computational Photonics

Prof. Dr. Antonio Calà Lesina

Light-opals interaction modeling by direct numerical solution of Maxwell's equations

authored by
Alessandro Vaccari, Antonino Calà Lesina, Luca Cristoforetti, Andrea Chiappini, Luigi Crema, Lucia Calliari, Lora Ramunno, Pierre Berini, Maurizio Ferrari
Abstract

This work describes a 3-D Finite-Difference Time-Domain (FDTD) computational approach for the optical characterization of an opal photonic crystal. To fully validate the approach we compare the computed transmittance of a crystal model with the transmittance of an actual crystal sample, as measured over the 400 ÷ 750 nm wavelength range. The opal photonic crystal considered has a face-centered cubic (FCC) lattice structure of spherical particles made of polystyrene (a non-absorptive material with constant relative dielectric permittivity). Light-matter interaction is described by numerically solving Maxwell's equations via a parallelized FDTD code. Periodic boundary conditions (PBCs) at the outer edges of the crystal are used to effectively enforce an infinite lateral extension of the sample. A method to study the propagating Bloch modes inside the crystal bulk is also proposed, which allows the reconstruction of the ω-k dispersion curve for k sweeping discretely the Brillouin zone of the crystal.

External Organisation(s)
Fondazione Bruno Kessler
University of Ottawa
Provincia Autonoma di Trento
National Research Council Italy (CNR)
Type
Article
Journal
Optics express
Volume
22
Pages
27739-27749
No. of pages
11
ISSN
1094-4087
Publication date
31.10.2014
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Atomic and Molecular Physics, and Optics
Electronic version(s)
https://doi.org/10.1364/OE.22.027739 (Access: Unknown)