Complex Optical Materials



Investigating the Optical Properties of a Laser Induced 3D Self-Assembled Carbon–Metal Hybrid Structure

M. A. Butt, A. Calà Lesina, M. Neugebauer, T. Bauer, L. Ramunno, A. Vaccari, P. Berini, Y. Petrov, D. Danilov, A. Manshina, P. Banzer, G. Leuchs

- Small, 2019 -

DOI: 10.1002/smll.201900512

Flakes
Carbon Matrix Sheet
Alloy nanoparticles
3D simulated model

LASER-WRITTEN COLOURS ON SILVER: OPTICAL EFFECT OF ALUMINA COATING

J.-M. Guay, A. Calà Lesina, G. Killaire, P. G. Gordon, C. Hahn, S. T. Barry, L. Ramunno, P. Berini, A. Weck

- Nanophotonics, 2019 -

DOI: 10.1515/nanoph-2018-0202

Colour Protection

Atomic layer deposition (ALD) of alumina protects the colours, and thickness optimization allows minimizing the colour change, thus making the laser colouring technique viable for commercialization. 

Simulation of nanoparticles and ALD layer

 

Effect of refractive index mismatch on forward-to-backward ratios in SHG imaging

J. N. van der Kolk, S. Bancelin, C. Kioulos, A. Calà Lesina, F. Légaré, L. Ramunno

- Optics Letters, 2018 -

DOI: 10.1364/OL.43.005082

Collagen model

Fibrils of different sizes (cylinders) - Incident polarization along the cylinder axis - Simulation approach: simulating SHG directly in the code

 

TOPOGRAPHY TUNING FOR PLASMONIC COLOR ENHANCEMENT VIA PICOSECOND LASERS BURSTS

J.-M. Guay, A. Calà Lesina, J. Baxter, G. Killaire, L. Ramunno, P. Berini, A. Weck

- Advanced Optical Materials, 2018 -

DOI: 10.1002/adom.201800189

Colour Enhancement

Nonburst technique
Burst technique
Simulation of nanoparticles on ripples

Laser burst technique creates ripples on the metal surface and enhances the colour saturation.

Laser-induced plasmonic colours on metals

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, A. Weck

-   Nature Communications, 2017 -

DOI: 10.1038/ncomms16095

Colour Generation

Collectible silver coin (diameter = 21 cm) painted via picosecond laser technique at the Royal Canadian Mint
SEM image
Experimental vs. simulated colours

LIGHT-OPALS INTERACTION MODELING BY DIRECT NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS

A. Vaccari, A. Calà Lesina, L. Cristoforetti, A. Chiappini, L. Crema, L. Calliari, L. Ramunno, P. Berini, M. Ferrari

- Optics Express, 2014 -

DOI: 10.1364/OE.22.027739

Photonic crystal model

Simulated vs. measured transmittance of an opal photonic crystal.
Field distribution (top) out of the bandgap (500 nm) and (bottom) in the bandgap (550 nm).